Monatshefte für Chemie Chemical Monthly © Springer-Verlag 1997 Printed in Austria

Electron Impact Induced Fragmentation of Aromatic N-Alkoxy-imines I. Ring Closure in (M–CH₂O)^{+•} Ions by Intramolecular Aromatic Substitution[#]

H. Pongratz [1], K. K. Mayer, and W. Wiegrebe

Fakultät für Chemie und Pharmazie, Universität Regensburg, D-93040 Regensburg, Germany

Summary. N-Butoxy- and N-propoxy-imines derived from o-, m-, and p-substituted benzaldehydes (X = F, Cl, Br, I) decompose upon electron impact to the respective aldoximes by loss of C_nH_{2n} and competitively *via* 1,5-distonic radical cations by loss of CH_2O to 1,3-distonic ions which eliminate H^{\bullet} and/or a halogen atom in the course of homolytic aromatic substitution, giving rise to cyclic $(M-CH_2O-H^{\bullet})^+$ or $(M-CH_2O-X^{\bullet})^+$ ions.

Keywords. N-Alkoxybenzaldimines; Electron impact ionization; Distonic ions; Ring closure; Homolytic aromatic substitution.

Elektronenstoßinduzierte Fragmentierung aromatischer N-Alkoxy-imine, 1. Mitt. Ringschluß von (M–CH₂O)^{+•}-Ionen durch intramolekulare aromatische Substitution

Zusammenfassung. N-Butoxy- und N-Propoxy-imine aus *o*-, *m*-, und *p*-substituierten Benzaldehyden (X = F, Cl, Br, I) zersetzen sich unter Elektronenbeschuß durch Verlust von C_nH_{2n} zu den entsprechenden Aldoximen. In einer Konkurrenzreaktion entstehen über 1,5-distonische Radikalkationen durch Abspaltung von CH₂O 1,3-distonische Ionen, die im Verlauf einer homolytischen aromatischen Substitution H[•] und/oder ein Halogenatom eliminieren, wodurch cyclische (M–CH₂O– H[•])⁺-oder (M–CH₂O–X[•])⁺-Ionen gebildet werden.

Introduction

Alkoxy-imine (oxime ether) increments frequently occur in drugs, *e.g.* fluvoxamine [2], cephalosporines [3], macrolide antibiotics [4], and antidepressiva [5] as well as in insecticides [6]. Moreover, they are used as synthons [7] and for identification and purification of thermolabile carbonyl compounds [8]. Whereas there is a wealth of papers dealing with various aspects of the MS behaviour of aliphatic and aromatic N-methoxy-imines [9], less information is published in the case of homologous N-alkoxy-imines.

[#] Dedicated with warm regards to Prof. Dr. D. Seebach, Zürich, on the occasion of his 60th birthday

In 1971, *Cooks* and *Varvoglis* [10] reported on a series of alkoxy-imines with varying length of the alkyl chain (C_1 – C_3) derived *inter alia* from benzaldehyde, substituted benzaldehydes, and benzophenone. The *n*-propyl ethers turned out to be unique in undergoing CH₂O elimination from the molecular ions, followed by loss of a hydrogen atom or ethene. A mechanistic interpretation is given by initial migration of a γ -H atom to nitrogen generating a 1,5-distonic ion **a** which decomposes in the course of a 4-centered rearrangement to the 1,3-distonic ion **b** (Scheme 1).

We found that elimination of CH_2O is not restricted to *n*-propoxy-imines; it is a common feature of oxime ethers with alkyl chains longer than C_2H_5 [1]. This study is concerned with the behaviour of alkoxy-imines of halogenated benzaldehydes upon ionization by electron impact and with the reactivity of the $(M-CH_2O)^{+\bullet}$ ions **b**.

Results and Discussion

A series of *n*-propoxy-, *n*-butoxy-, and (3-methyl)butoxy-imines of halogenated benzaldehydes were synthesized and examined at 70/12 eV and by MIMS (B/E = const. linked scans; first field free region: 1^{st} FFR) of their molecular and (M–CH₂O)^{+•} ions.

In order to explain the general features of fragmentation, the 70 and 12 eV mass spectra of 10 and the B/E linked scan spectra of its molecular ion are shortly discussed (Fig. 1). At high ionization energies, two important primary fragment ions and their decomposition products predominate. 1) Loss of CH₂O from M^{+•} at m/z = 211/213 triggered by 1,5-H-migration from C γ to N gives rise to the ions at

Cmpd.	Hal	R	Cmpd.	Hal	R
1	o-F	R ¹	14	m-Br	R ²
2	o-C1	\mathbb{R}^1	15	<i>p</i> -Br	R ²
3	m-Cl	R1	16	<i>o</i> -I	R ²
4	p-Cl	\mathbb{R}^1	17	<i>o-</i> F	R ³
5	o-Br	R1	18	o-Cl	R ³
6	<i>o-</i> I	R1	19	o-Br	R ³
7	<i>o</i> -F	R ²	20	o-I	R3
8	<i>m</i> -F	R ²	21	0,0´-Cl2	R1
9	<i>p</i> -F	R ²			
10	o-Cl	R ²	C_6	Y5-CX=N-	O-C4H9
11	m-Cl	R ²	22 X=	H Y=I)
12	p-Cl	R ²	23 X=	D Y=l	ł
13	o-Br	R ²	24 C ₆ I	H5-CH=N-	O-C4D9

 $R^{1} = n - C_{3}H_{7}; R^{2} = n - C_{4}H_{9}; R^{3} = CH_{2} - CH_{2} - CH_{1}(CH_{3})_{2}$

Table 1. Selected data from the EIMS (70 / 12 eV; sum of ${}^{35+37}Cl / {}^{79+81}Br$) and MIMS (M^{+•}, ${}^{35}Cl / {}^{79}Br$; B/E linked scans) of **1**, **2**, **5**, and **6** (% rel. int (% TIC); ${}^{13}C$ corr.)

		$(M-CH_2O)^{+\bullet}$	$(M-CH_2O-H^{\bullet})^+$	$(M-CH_2O-X^{\bullet})^+$	$(M - C_3 H_6)^{+\bullet}$	$(M-C_{3}H_{6}-X^{\bullet})^{+}$
1	70 eV	17 (1.9)	40 (4.5)	5 (0.5)	41 (4.7)	14 (1.6)
	12 eV	26 (8.9)	50 (17.1)	5 (1.0)	24 (8.3)	1 (0.3)
	MIMS	100 (69.5)	22 (15.0)	<1 (0.4)	1 (0.5)	_
2	70 eV	14 (1.3)	36 (3.2)	19 (1.6)	53 (4.6)	100 (8.8)
	12 eV	10 (3.6)	21 (8.0)	9 (3.2)	14 (5.1)	12 (4.5)
	MIMS	100 (56.8)	18 (10.4)	8 (4.7)	2 (1.0)	_
5	70 eV	5 (0.6)	23 (2.8)	16 (1.9)	17 (2.0)	100 (12.1)
	12 eV	12 (3.0)	28 (7.0)	12 (3.2)	15 (3.8)	23 (5.9)
	MIMS	100 (58.7)	11 (6.3)	2 (1.1)	3 (1.9)	_
6	70 eV	4 (0.6)	34 (4.9)	8 (1.2)	14 (2.0)	48 (6.9)
	12 eV	2 (1.2)	21 (10.2)	5 (2.5)	6 (3.0)	15 (7.3)
_	MIMS	38 (18.7)	100 (49.0)	2 (0.9)	8 (4.0)	1 (0.3)

m/z = 181/183 which subsequently eliminate a H atom (m/z = 180/182), C_2H_4 (m/z = 153/155), or a methyl radical (m/z = 166/168) in accordance with Scheme 1 [10]¹. In addition, a strong ion at m/z = 146 comes up, corresponding with loss of the *o*-Cl atom from the (M–CH₂O)^{+•} ion.

¹ The loss of ${}^{\bullet}CH_3$ indicates a rearrangement within ion **b** or its analogues, which will be discussed in a forthcoming paper

H. Pongratz et al.

Fig. 1. Mass spectra of 10

2) Elimination of C₄H₈ from M^{+•} affords ions at m/z = 155/157 which decompose by the same routes as the molecular ions of *o*-chlorobenzaldoxime, *e.g.* loss of oxygen (m/z = 139/141), •OH (m/z = 138/140), or Cl[•] (m/z = 120) [10]. Lowering the ionization energy (12 eV) causes the oxime ion and its daughter ions to decrease, whereas the (M–CH₂O)^{+•} ion and its product ions gain intensity, the ion at m/z = 146 being the base peak.

Metastable molecular ions of **10** (1st FFR; B/E) lose (in competition to H[•] elimination) preferably CH₂O and thereupon Cl[•]. The oxime ion, however, is totally suppressed. This fact supports the postulation of a 1,5-H γ -migration to N (Scheme 1) since a six-membered transition state expectedly is more favorable than a tight four-centered one as in the case of a 1,3-H-shift from C_{β} to oxygen, yielding the oxime ions [10].

The unexpected loss of a chlorine atom from the $(M-CH_2O)^{+\bullet}$ ions in the case of **10** prompted us to examine further halogenated oxime ethers (F, Cl, Br, I) with respect to type and to different length of the alkyl chain.

Table 2. Selected data from the EIMS (70/12 eV; sum of ${}^{35+37}\text{Cl}/{}^{79+81}\text{Br}$) and MIMS (M^{+•}, ${}^{35}\text{Cl}/{}^{79}\text{Br}$; B/E linked scans) of **7**, **10**, **13**, and **16** (% rel. int (% TIC); ${}^{13}\text{C}$ corr.)

	<u> </u>	$(M-CH_2O)^{+\bullet}$	(MCH ₂ O-H•) ⁺	$(M-CH_2O-X^{\bullet})^+$	$(M - C_4 H_8)^{+\bullet}$	$(M-C_4H_8-X^{\bullet})^+$
7	70 eV	23 (2.6)	73 (8.1)	10 (1.1)	17 (1.9)	9 (1.0)
	12 eV	37 (7.8)	100 (21.1)	0.2 (0.03)	17 (3.6)	2 (0.4)
	MIMS	100 (64.1)	4 (3.0)	_		-
10	70 eV	15 (1.5)	56 (5.4)	58 (5.6)	33 (3.2)	56 (5.4)
	12 eV	33 (4.2)	109 (13.9)	100 (12.8)	39 (5.0)	26 (3.4)
	MIMS	92 (27.3)	14 (4.4)	13 (4.1)	-	
13	70 eV	19 (1.1)	75 (4.9)	64 (4.1)	18 (1.2)	81 (5.2)
	12 eV	37 (4.4)	108 (14.0)	100 (12.1)	16 (1.9)	25 (3.1)
	MIMS	33 (19.0)	5 (2.5)	0.6 (0.3)		_
16	70 eV	7 (0.6)	52 (3.9)	63 (4.7)	23 (1.7)	52 (3.9)
	12 eV	12 (3.1)	58 (11.5)	54 (10.8)	22 (4.5)	9 (1.9)
	MIMS	33 (19.6)	7 (0.4)	0.7 (0.4)	_	

Table 3. Selected data from the EIMS (70/12 eV; sum of ${}^{35+37}Cl/{}^{79+81}Br$) and MIMS (M^{+•}, ${}^{35}Cl/{}^{79}Br$; B/E linked scans) of **10–12** (% rel. int (% TIC); ${}^{13}C$ corr.)

	$(M-CH_2O)^{+\bullet}$	$(M-CH_2O-H^{\bullet})^+$	$(M-CH_2O-Cl^{\bullet})^+$	$(M - C_4 H_8)^{+\bullet}$	$(M-C_4H_8-Cl^{\bullet})^+$
10 70 eV	15 (1.5)	56 (5.4)	58 (5.6)	33 (3.2)	56 (5.4)
o 12 eV	33 (4.2)	109 (13.9)	100 (12.8)	39 (5.0)	26 (3.4)
MIMS	92 (27.3)	14 (4.4)	13 (4.1)	_	_
11 70 eV	31 (7.0)	117 (9.4)	31 (2.5)	29 (2.3)	17 (1.4)
<i>m</i> 12 eV	50 (8.2)	133 (21.8)	34 (5.5)	19 (3.1)	2 (0.3)
MIMS	35 (20.6)	3 (3.5)	1 (0.5)	-	-
12 70 eV	16 (1.3)	102 (8.3)	40 (3.3)	60 (4.8)	3 (0.25)
p 12 eV	18 (3.2)	110 (19.4)	38 (6.7)	27 (4.7)	0.3 (0.04)
MIMS	48 (18.2)	46 (17.2)	11 (4.1)		-

In Tables 1 and 2, the relative intensities and the percentage of the total ion current (TIC) of $(M-CH_2O)^{+\bullet}$ and $(M-C_nH_{2n})^{+\bullet}$ ions and their daughter ions resulting from loss of H[•] and Cl[•] of the propoxy-imines 1, 2, 5, 6 and butoxy-imines 7, 10, 13, and 16, are listed. In most cases there is a strong discrimination of the oxime $(M-C_nH_{2n})^{+\bullet}$ and $(M-C_nH_{2n}-Cl^{\bullet})^+$ ions against $(M-CH_2O)^{+\bullet}$ and $(M-CH_2O-Cl^{\bullet}/H^{\bullet})^+$ ions when lowering the internal energy of the resp. molecular ions. From all $(M-CH_2O)^{+\bullet}$ ions the halogen atoms are lost. However, there is no straightforward trend with respect to the dissociation energies of the C-halogen bond or the nature of the alkyl group. The major reaction of $(M-CH_2O)^{+\bullet}$ ions is H[•] elimination.

Furthermore, the data in Table 3 show that loss of halogen is not limited to the *ortho* position. $(M-CH_2O)^{+\bullet}$ ions of *meta-* and *para-*isomers **11** and **12**, too, eliminate a chlorine atom, though to a smaller amount (*o:m:p* = 1.0:0.4:0.6 at 70 eV). In the case of **10**, loss of Cl[•] from $(M-CH_2O)^{+\bullet}$ is of the same magnitude as that of H[•]; in the case of **11** and **12**, however, H[•] elimination exceeds that of Cl[•].

Additional information was obtained from the spectra (B/E linked scans) of metastable $(M-CH_2O)^{+\bullet}$ ions decomposing in the 1st FFR. The results are compiled in Tables 4–6.

Ion cmpd.	Δ H •	$\Delta H_3 C^{\bullet}$	∆Hal•	$\Delta C_2 H_4$	Δ 29 u
1	100 (90.3)	1 (0.9)	6 (5.4)	0.6 (0.5)	3 (2.7)
2	100 (73.8)	0.5 (0.4)	23 (17.3)	0.5 (0.4)	11 (7.9)
3	100 (87.2)	0.6 (0.5)	8 (6.6)	0.6 (0.5)	6 (5.0)
4	100 (89.7)	0.6 (0.5)	9 (8.0)	0.6 (0.5)	11 (10.2)
5	100 (66.8)	1 (0.9)	13 (8.5)	3 (2.1)	32 (21.7)
6	100 (96.2)	0.2 (0.2)	2 (1.9)	0.3 (0.3)	1.5 (4.4)
21	_	_	100 (72.4)	1 (0.9)	37 (26.7)

Table 4. MIMS of $(M-CH_2O)^{+\bullet}$ ions (B/E linked scans; ${}^{35}Cl/{}^{79}Br$) of propoxy-imines 1–6, 21 (% rel. [int. % TIC])

Table 5. MIMS of $(M-CH_2O)^{+\bullet}$ ions (B/E linked scans; ${}^{35}Cl/{}^{79}Br$) of butoxy-imines 7–15 (% rel. int. [% TIC])

Ion cmpd.	ΔH^{\bullet}	$\Delta H_3 C^{\bullet}$	∆Hal•	$\Delta C_2 H_4$	Δ 29 u	Δ 43 u
7	100 (85.1)	6 (4.9)	5 (3.8)	1 (1.1)	6 (4.6)	0.6 (0.5)
8	100 (87.3)	4 (3.9)	1 (1.1)	0.6 (0.5)	8 (6.6)	0.6 (0.5)
9	100 (89.8)	4 (3.4)	0.6 (0.6)	2 (1.7)	4 (3.4)	1 (1.1)
10	100 (61.5)	3 (1.9)	53 (32.7)	4 (2.3)	0.6 (0.4)	2 (1.2)
11	100 (54.0)	1 (1.1)	3 (3.2)	_	1 (1.1)	0.5 (0.6)
12	100 (73.5)	6 (4.2)	21 (15.8)	0.6 (0.5)	7 (5.1)	1 (0.9)
13	100 (52.4)	10 (5.1)	61 (32.0)	11 (5.9)	2 (0.8)	7 (3.2)
14	100 (95.8)	0.5 (0.5)	3 (2.8)	_	1 (0.9)	-
15	100 (81.9)	4 (3.2)	16 (12.8)	0.5 (0.3)	3 (2.2)	_

-	,						
Ion cmpd.	ΔH^{\bullet}	$\Delta H_3 C^{\bullet}$	∆Hal•	Δ 29 u	Δ 42 u	Δ 55 u	Δ 57 u
17	100 (76.7)	13 (9.7)	3 (2.4)	5 (3.9)	1 (1.0)	6 (4.9)	2 (1.4)
18	100 (57.0)	3 (1.5)	69 (39.6)	0.6 (0.4)	0.6 (0.4)	1 (0.7)	0.6 (0.4)
19	100 (82.8)	1 (1.1)	14 (14.0)	0.6 (0.5)	_	1 (1.1)	0.6 (0.5)
20	100 (94.0)	1 (1.1)	0.6 (0.6)	0.6 (0.6)	-	3 (3.1)	0.6 (0.6)

Table 6. MIMS of $(M-CH_2O)^{+\bullet}$ ions (B/E linked scans; ${}^{35}Cl/{}^{79}Br$) of 3-methylbutoxy-imines 17–20 (% rel. int. [%TIC])

Propoxy-imines 1-6 (Table 4)

The dominating reaction of $(M-CH_2O)^{+\bullet}$ is the loss of H[•]. The *ortho* substituted $(M-CH_2O)^{+\bullet}$ ions lose the halogen atoms in the order Cl (2) > Br (5) > F (1) > I (6). In the case of the three positional isomers 2, 3, and 4, loss of *o*-Cl[•] gives rise to $(M-CH_2O-Cl^{\bullet})^+$ ions of much greater abundance than loss of *m*-Cl[•] or *p*-Cl[•].

Butoxy-imines 7–15 (Table 5)

H[•]-loss from $(M-CH_2O)^{+\bullet}$ ions is again the main reaction. $(M-CH_2O)^{+\bullet}$ ions decrease in intensity from *ortho* to *para* isomer (7–9). $(M-CH_2O-Cl^{\bullet})^+$ and $(M-CH_2O-Br^{\bullet})^+$ ions show an irregularity in as much as those from the *para* isomers 12 and 15 carry a higher percentage of the total ion current than the *meta* isomers 11 and 14. The values of the analogous isomeric ions 10/13, 11/14, and 12/15, however, are of the same magnitude.

(3-Methylbutoxy)-imines 16–19 (Table 6)

There is a sharp decrease in intensity of the $(M-CH_2O-Cl^{\bullet})^+$ ions: Cl (17) > Br (18) > I (19) (39 to 0.6% TIC) to the profit of H[•] elimination (57 to 94% TIC).

In summary, the halogen substituents are lost from all positions of the phenyl ring with considerable preference of the *ortho* positions. There is no obvious relationship between the intensities of $(M-CH_2O-Hal^{\bullet})^+$ ions and the C-Hal bond strength which decreases from C_6H_5 -F to C_6H_5 -I (F: 5.4 eV, Cl: 4.1 eV, Br: 3.5 eV, I: 2.8 eV [11]), since the elimination of iodine gives rise to very weak signals only. Loss of a H atom from $(M-CH_2O)^{+\bullet}$ ions is pronounced in all cases, as well at 70 and 12 eV as from metastable ions. This H[•] may come from the side chain or from the aromatic group: $(M-CH_2O)^{+\bullet}$ ions from the oxime ether **22** (C_6D_5) lose 90% D[•] and 10% H[•], those from **23** exclusively H[•] (*i.e.* the methine H is retained as already stated by *Cooks* [10]), and $(M-CH_2O)^{+\bullet}$ from **24** (C_4D_9) expels 98% H[•] and 2% D[•]. Without considering possible kinetic isotope effects it can be concluded that maximally 10% of the hydrogen is lost from the alkyl group as shown in Scheme 1. Moreover, H[•] elimination is totally suppressed in the case of o, o'-dichlorobenzaldoxime ether **21**, the $(M-CH_2O)^{+\bullet}$ ion of which loses solely Cl[•] (Table 4).

From these results we conclude that the elimination of H^{\bullet} and halogen atoms from the phenyl group comes to pass in the course of a cyclization process *via* reactive intermediates which arise by intramolecular aromatic substitution. Reactions of this type frequently occur in radical cations and are well documented [12, 13]. In the case of the most extensively studied and best understood examples the reaction sequence starts from the molecular ions by addition of a hetero atom to the *ortho* position of the aromatic ring with consecutive elimination of the *ortho* substituent (*e.g.* H^{\bullet} , Hal[•]) or after isomerization by a series of 1,2 H shifts with loss of the *meta* and *para* substituents [13, 14].

The distonic fragment ion **b** (Scheme 1) or its alkyl homologues contain an isolated primary (1–6, 21), secondary (7–16, 24), or tertiary (17–20) C radical which can attack the aromatic ring at the *ortho* positions. Aromatic substitution by C radicals is well known in solution and gas phase chemistry [15]. The rearranged molecular ions of N,N-dimethylthiobenzamide and its *ortho* substituted derivatives (CH₃, Hal), for instance, lose H[•] and the *ortho* substituent (Hal[•]), the key intermediate being the distonic ion **c** with the radical site localized at the C atom of the former N-CH₃ increment [16]. The molecular ions of the three isomeric chlorophenyl-butadienes [17] cyclize to $C_{10}H_8$ (naphthalene) by loss of Cl[•] from every position, followed by H[•] elimination.

The $(M-CH_2O)^{+\bullet}$ ions (*e.g.* **b** in Scheme 1) eliminate Hal[•] preferentially from the *ortho* position; *meta* and *para* substituents are lost to a lesser extent. In the case of the three chloro isomers **2**, **3**, and **4** the resulting $(M-CH_2O-Cl^{\bullet})^+$ ions give virtually identical collisional activation (CA) mass spectra [18] (1st FFR, B/E linked scans, He, Fig. 2) which is good evidence that these ions have an identical structure (or that there is produced an identical mixture of structures). So we propose a course of reaction as shown in Scheme 2:

The isolated C radical can attack at *both ortho* positions of the phenyl group; a new C-C bond is formed, and the cyclization product (*e.g.* o_1 and o_2) is stabilized by elimination of the former *o*-substituent $o X^{\bullet}$ or H[•]. As the positive charge and the radical electron reside in the same delocalized orbital of the bicyclic addition products, hydrogen migration around the former phenyl ring by 1,2 H shifts can take place [13]. In this way, reactive intermediates with X and H at the *meta* (m_1 , m_2) or *para* positions come up which can lose X[•] or H[•]. The high intensities of the (M-CH₂O-H[•])⁺ ions can be explained by the regioselectivity of the C radicals [19] as they obviously prefer addition at the unsubstituted *ortho* position, in particular, if X is voluminous (*e.g.* iodine) and/or in the case of the bulky *tert*. radicals.

Fig. 2. CA-MS (B/E, 1^{st} FFR; He) of (M–CH₂O–Cl[•])⁺-ions from *o*- (2), *m*- (3), and *p*- (4) chloro-N-propoxybenzaldimines

Experimental

Melting points: Büchi SMP 20, uncorrected. IR spectra: Nicolet 510 FT-IR. Data acquisition: Apple Macintosh II ci. ¹H NMR spectra: Varian EM 390 (90 MHz), *TMS* as int. standard, solvent: CDCl₃ with 1% *TMS*. MS: EIMS (70; 12 eV), MIMS, CA-MS (He, accumulated data from 100 individual scans) MAT 95. TLC: Merck 5554 (DC-Al sheets, silica 60 F₂₅₄). GC: HP 5890 II, carrier gas: He, detector: FID, column: OV 101 50 m × 0.32 mm × 0.3 µm. Elementary analyses: Mikroanalytisches Labor, University of Regensburg. All compounds are colorless oily liquids, if not otherwise stated.

D₉-n-Iodobutane

D₉-n-Butanol (Aldrich) was reacted with red phosphorus and I₂ [20].

Benzaldehydes D₅-Benzaldehyde

Reaction of D_5 -bromobenzene with metallic Li in dry ether [21, 22] affords D_5 -phenyllithium which reacts with dimethyl formamide [23] affording D_5 -benzaldehyde.

EI Induced Fragmentation of N-Alkoxy-imines

α -D-Benzaldehyde

Reduction of benzoyl chloride with $LiAlD_4$ in ether produces α, α -D₂-benzyl alcohol which was oxidized with pyridinium chromate [24] in ether.

Benzaldehyde oximes

These oximes were prepared according to a general procedure [25], reacting the benzaldehydes with hydroxylamine hydrochloride/sodium acetate in 70% ethanol.

N-Alkoxybenzaldimines

The title compounds were synthesized following known protocols:

a) alkylation of the benzaldoxime sodium salts [26, 27] by treatment of the oximes (0.05 mol) with alkyl bromides or iodides (0.053 mol) in ethanolic solution of NaOEt (from 1.15 g (0.05 g atom) Na metal in 100 ml of EtOH) under reflux.

b) Iodo-benzaldoximes were converted into their silver salts by dissolving the oximes (0.02 mol) and 0.84 g (0.021 mol) NaOH in 20 ml of water. Then 3.6 g (0.021 mol) AgNO₃ are added. The precipitate is washed with water and dried, mixed with 50 ml of ether and 0.04 mol of alkyl iodide, and stirred overnight under exclusion of light [25].

The purity of the oxime ethers was checked by GC.

N-(n-Propoxy)-2-fluorobenzaldimine (1)

Yield: 60%; b.p.: 98°C; IR (film): 3078 (CH), 3045 (CH), 2968 (CH), 2939 (CH), 2879 (CH) cm⁻¹; ¹H NMR: $\delta = 8.30$ (s, 1H, CH=N), 8.10–6.75 (m, 4H, arom), 4.15 (t, 2H, J = 7.5 Hz, CH₂-CH₂-CH₃), 1.75 (sext, 2H, J = 7.5 Hz, CH₂-CH₂-CH₃), 0.95 (t, 3H, J = 7.5 Hz, CH₂-CH₃) ppm; C₁₀H₁₂FNO (181.2); caled.: C 66.3, H 6.68, N 7.7; found: C 66.1, H 6.93, N 7.7.

N-(n-Propoxy)-2-chlorobenzaldimine (2)

Yield: 53%; b.p.₂₀₋₂₅: 96–104°C; IR: 3072 (CH), 2968 (CH), 2937 (CH), 2879 (CH) cm⁻¹; ¹H NMR: $\delta = 8.45$ (s, 1H, CH=N), 8.05–6.95 (m, 4H arom), 4.15 (t, 2H, J = 7.5 Hz, CH₂-CH₂-CH₃), 1.75 (sext, 2H, J = 7.5 Hz, CH₂-CH₂-CH₃), 0.95 (t, 3H, J = 7.5 Hz, CH₂-CH₃) ppm; C₁₀H₁₂ClNO (197.7); calcd.: C 60.8, H 6.12, N 7.1; found: C 60.8, H 5.99, N 7.2.

N-(n-Propoxy)-3-chlorobenzaldimine (3)

Yield: 54%; b.p._{0.04}: 63–65°C; IR: 3066 (CH), 2970 (CH), 2879 (CH) cm⁻¹; ¹H NMR: $\delta = 7.98$ (s, 1H, CH=N), 7.65–7.10 (m, 4H arom), 4.12 (t, 2H, J = 7.5 Hz, CH_2 -C₂H₅), 1.75 (sext, 2H, J = 7.5 Hz, CH₂-CH₂-CH₃), 0.98 (t, 3H, J = 7.5 Hz, CH₂-CH₃); C₁₀H₁₂ClNO (197.7); calcd.: C 60.8, H 6.12, N 7.1; found: C 60.6, H 6.01, N 7.1.

N-(n-Propoxy)-4-chlorobenzaldimine (4)

Yield: 63%; b.p._{0.05}: 65–67°C; IR: 3033 (CH), 2968 (CH), 2879 (CH) cm⁻¹; ¹H NMR: $\delta = 7.98$ (s, 1H, CH=N), 7.60–7.05 (m, 4H arom), 4.10 (t, 2H, J = 7.5 Hz, CH_2 - C_2 H₅), 1.73 (sext, 2H, J = 7.5 Hz, CH_2 - CH_2 - CH_3), 0.95 (t, 3H, J = 7.5 Hz, CH_2 - CH_3) ppm; C_{10} H₁₂ClNO (197.7); calcd.: C 60.8, H 6.12, N 7.1; found: C 60.8, H 6.12, N 7.3.

N-(n-Propoxy)-2-bromobenzaldimine (5)

Yield: 62%; b.p._{7.0-8.0}: 143–145°C; IR: 3068 (CH), 2966 (CH), 2937 (CH), 2877 (CH) cm⁻¹; ¹H NMR: $\delta = 8.45$ (s, 1H, CH=N), 8.00–6.95 (m, 4H arom), 4.15 (t, 2H, J = 7.5 Hz, $CH_2C_2H_5$), 1.75 (sext, 4H, J = 7.5 Hz, $CH_2-CH_2-CH_3$), 0.95 (t, 3H, J = 7.5 Hz, CH_2-CH_3) ppm; C₁₀H₁₂BrNO (242.1); calcd.: C 49.6, H 5.00, N 5.8; found: C 49.6, H 4.74, N 6.0.

N-(n-Propoxy)-2-iodobenzaldimine (6)

Yield: 43%; slightly yellow liquid; b.p._{0.01}: 86–87°C; IR: 3064 (CH), 2966 (CH), 2935 (CH), 2872 (CH) cm⁻¹; ¹H NMR: $\delta = 8.40$ (s, 1H, CH=N), 7.95–6.90 (m, 4H arom), 4.15 (t, 2H, J = 7.5 Hz, CH₂-C₂H₅), 1.75 (sext, 2H, J = 7.5 Hz, CH₂-CH₃), 0.95 (t, 3H, J = 7.5 Hz, CH₂-CH₃) ppm; C₁₀H₁₂INO (289.1); calcd.: C 41.5, H 4.18, N 4.8; found: C 41.8, H 4.22, N 5.0.

N-(n-Butoxy)-2-fluorobenzaldimine (7)

Yield: 31%; b.p._{0.01}: 50–51°C; IR: 2962 (CH), 2875 (CH) cm⁻¹; ¹H NMR: $\delta = 8.35$ (s, 1H, CH=N), 8.00–6.90 (m, 4H arom), 4.25 (t, 2H, J = 7.5 Hz, O-CH₂-CH₂), 1.95–1.20 (m, 4H, CH₂-CH₂-CH₂-CH₃), 0.95 (t, 3H, J = 7.5 Hz, CH₂-CH₃) ppm; C₁₁H₁₄FNO (195.2); calcd.: C 67.7, H 7.23, N 7.2: found: C 67.3, H 7.29, N 7.3.

N-(n-Butoxy)-3-fluorobenzaldimine (8)

Yield: 50%; b.p._{0.1}: $61-62^{\circ}$ C; IR: 3074 (CH), 3043 (CH), 2962 (CH), 2875 (CH) cm⁻¹; ¹H NMR: $\delta = 8.05$ (s, 1H, CH=N), 7.55–6.90 (m, 4H arom), 4.20 (t, 2H, J = 7.5 Hz, O-CH₂-CH₂), 1.95–1.20 (m, 4H, O-CH₂-(CH₂)₂-CH₃), 0.95 (t, 3H, J = 7.5 Hz, CH₂-CH₃) ppm; C₁₁H₁₄FNO (195.2); calcd.: C 67.7, H 7.23, N 7.2; found: C 67.5, H 6.89, N 7.3.

N-(n-Butoxy)-4-fluorobenzaldimine (9)

Yield: 41%; b.p._{0.1}: 65–66°C; IR: 3045 (CH), 2962 (CH), 2875 (CH) cm⁻¹; ¹H NMR: $\delta = 8.05$ (s, 1H, CH=N), 7.75–6.85 (m, 4H arom), 4.15 (t, 2H, J = 7.5 Hz, O-CH₂-CH₂), 1.90–1.15 (m, 4H, CH₂ (CH₂)₂CH₃), 0.95 (t, 3H, J = 7.5 Hz, CH₂-CH₃) ppm; C₁₁H₁₄FNO (195.2); calcd.: C 67.7, H 7.23, N 7.2; found: C 67.7, H 7.23, N 7.3.

N-(n-Butoxy)-2-chlorobenzaldimine (10)

Yield: 68%; b.p._{0.01}: 75–76°C; IR: 3070 (CH), 2962 (CH), 2875 (CH) cm⁻¹; ¹H NMR $\delta = 8.50$ (s, 1H, CH=N), 8.00–7.05 (m; 4H arom), 4.20 (t, 2H, J = 7.5 Hz, CH₂-C₃H₇(n)), 1.95–1.20 (m, 4H, CH₂-CH₂-CH₃), 0.95 (t, 3H, J = 7.5 Hz, CH₂-CH₃) ppm; C₁₁H₁₄ClNO (211.7); calcd.: C 62.4, H 6.67, N 6.6; found: C 62.0, H 6.60, N 6.7.

N-(n-Butoxy)-3-chlorobenzaldimine (11)

Yield: 54%; b.p._{0.03}: 80–81°C; IR: 3066 (CH), 2960 (CH), 2875 (CH) cm⁻¹; ¹H NMR: $\delta = 8.00$ (s, 1H, CH=N), 7.70–7.05 (m, 4H arom), 4.20 (t, 2H, J = 7.5 Hz, CH₂-C₃H₇(n)), 1.90–1.20 (m, 4H CH₂-CH₂-CH₃), 0.95 (t, 3H, J = 7.5 Hz, CH₂-CH₃) ppm; C₁₁H₁₄ClNO (211.7); calcd.: C 62.4, H 6.67, N 6.6; found C 62.1, H 6.65, N 6.7.

EI Induced Fragmentation of N-Alkoxy-imines

N-(n-Butoxy)-4-chlorobenzaldimine (12)

Yield: 55%; b.p._{0.03}: 79–80°C, IR: 3033 (CH), 2962 (CH), 2875 (CH) cm⁻¹; ¹H NMR: $\delta = 8.05$ (s, 1H, CH=N), 7.65–7.15 (m, 4H arom), 4.20 (t, 2H, J = 7.5 Hz, CH_2 -C₃H₇(*n*)), 1.90–1.15 (m, 4H, CH₂-CH₂-CH₂-CH₃), 0.95 (t, 3H, J = 7.5 Hz, CH₂-CH₃) ppm; C₁₁H₁₄CINO (211.7); calcd.: C 62.4, H 6.67, N 6.6; found C 62.2, H 6.75, N 6.7.

N-(n-Butoxy)-2-bromobenzaldimine (13)

Yield: 63%; b.p._{0.02}: 87–88°C; IR: 3068 (CH), 2960 (CH), 2875 (CH) cm⁻¹; ¹H NMR: $\delta = 8.50$ (s, 1H, CH=N), 8.00–7.05 (m, 4H arom), 4.20 (t, 2H, J = 7.5 Hz, CH_2 -C₃H₇(*n*)), 1.95–1.20 (m, 4H, CH₂-CH₂-CH₂-CH₃), 0.95 (t, 3H, J = 7.5 Hz, CH₂-CH₃) ppm; C₁₁H₁₄BrNO (256.1); calcd.: C 51.6, H 5.51, N 5.5; found: C 51.5, H 5.59, N 5.7.

N-(n-Butoxy)-3-bromobenzaldimine (14)

Yield: 57%; b.p._{0.01}: 90–91°C; IR: 3064 (CH), 2956 (CH), 2870 (CH) cm⁻¹; ¹H NMR: $\delta = 8.00$ (s, 1H, CH=N), 7.90–7.60 (m, 5H arom), 4.20 (t, 2H, J = 7.5 Hz, O-CH₂-CH₂), 2.10–1.20 (m, 4H, O-CH₂-CH₂), 0.95 (t, 3H, J = 7.5 Hz, CH₂-CH₃) ppm; C₁₁H₁₄BrNO (256.1); calcd.: C 51.6, H 5.51, N 5.5; found: C 51.5, H 5.38, N 5.6.

N-(n-Butoxy)-4-bromobenzaldimine (15)

Yield: 48%; b.p._{0.01}: 87–88°C; IR: 2960 (CH), 2935 (CH), 2873 (CH) cm⁻¹; ¹H NMR: $\delta = 8.00$ (s, 1H, CH=N), 7.45 (s, 4H arom), 4.15 (t, 2H, J = 7.5 Hz, O-CH₂-CH₂), 2.00–1.15 (m, 4H, O-CH₂-CH₂), 0.95 (t, 3H, J = 7.5 Hz, CH₂-CH₃) ppm; C₁₁H₁₄BrNo (256.1); calcd.: C 51.6, H 5.51, N 5.5; found: C 51.6, H 5.53, N 5.6.

N-(n-Butoxy)-2-iodobenzaldimine (16)

Yield: 41%; slightly yellow liquid; b.p._{0.02}: 95–97°C; IR: 3064 (CH), 2960 (CH), 2873 (CH) cm⁻¹; ¹H NMR: $\delta = 8.30$ (s, 1H, CH=N), 8.15–6.80 (m, 4H arom), 4.20 (t, 2H, J = 7.5 Hz, CH_2 -C₃H₇), 1.95–1.10 (m, 4H, CH₂-CH₂-CH₂-CH₃), 0.95 (t, 3H, J = 7.5 Hz, CH₂-CH₃) ppm; C₁₁H₁₄INO (303.1); calcd.: C 43.6, H 4.66, N 4.6; found: C 43.4, H 4.38, N 4.8.

N-(3-Methylbutoxy)-2-fluorobenzaldimine (17)

Yield: 45%; b.p._{0.01}: 64–65°C; IR: 3078 (CH), 3045 (CH), 2962 (CH) cm⁻¹; ¹H NMR: $\delta = 8.35$ (s, 1H, CH=N) , 8.00–6.90 (m, 4H arom), 4.25 (t, 2H, J = 7.5 Hz, O-CH₂-CH₂), 2.05–1.45 (m, 3H, CH₂-CH(CH₃)₂), 0.95 (d, 6H, J = 7.5 Hz, CH(CH₃)₂) ppm; C₁₂H₁₆FNO (209.3); calcd.: C 68.9, H 7.71, N 6.7; found: C 69.1, H 7.68, N 6.9.

N-(3-Methylbutoxy)-2-chlorobenzaldimine (18)

Yield: 64%; b.p._{0.01}: 84–85°C; IR: 3070 (CH), 3014 (CH), 2960 (CH), 2873 (CH) cm⁻¹; ¹H NMR: $\delta = 8.48$ (s, 1H, CH=N), 8.05–7.00 (m, 4H arom), 4.20 (t, 2H, J = 7.5 Hz, CH_2 -CH₂-CH₂-CH(CH₃)₂), 2.05–1.35 (m, 3H, CH₂-CH₂-CH(CH₃)₂), 0.95 (d, 6H, J = 7.5 Hz, CH(CH₃)₂) ppm; C₁₂H₁₆ClNO (225.7); calcd.: C 63.9, H 7.15, N 6.2; found: C 64.0, H 7.18, N 6.3.

N-(3-Methylbutoxy)-2-bromobenzaldimine (19)

Yield: 59%; b.p._{0.01}: 83–84°C; IR: 3068 (CH), 2958 (CH) cm⁻¹; ¹H NMR: $\delta = 8.45$ (s, 1H, CH=N), 8.00–6.95 (m, 4H arom), 4.20 (t, 2H, J = 7.5 Hz, CH₂-CH₂-CH(CH₃)₂), 2.10–1.40 (m, 3H, CH₂-CH₂-CH(CH₃)₂), 0.95 (d, 6H, J = 7.5 Hz, CH(CH₃)₂) ppm; C₁₂H₁₆BrNO (270.2); calcd.: C 53.4, H 5.97, N 5.2; found: C 53.5, H 6.06, N 5.4.

N-(3-Methylbutyoxy)-2-iodobenzaldimine (20)

Yield: 57%; slightly yellow liquid; b.p._{0.04}: 106–107°C; IR: 3064 (CH), 2958 (CH), 2871 (CH) cm⁻¹; ¹H NMR: $\delta = 8.35$ (s, 1H, CH=N), 8.15–6.85 (m, 4H arom), 4.22 (t, 2H, J = 7.5 Hz, CH₂-CH₂-CH(CH₃)₂), 2.00–1.30 (m, 3H, CH₂-CH₂-CH(CH₃)₂), 0.98 (d, 6H, J = 7.5 Hz, CH(CH₃)₂) ppm; C₁₂H₁₆INO (317.2); calcd.: C 45.4, H 5.09, N 4.4; found: C 45.2, H 5.05, N 4.6.

N-(n-Propoxy)-2,6-dichlorobenzaldimine (21)

Yield: 35%; b.p._{2.0}: 138°C; IR: 3080 (CH), 2968 (CH), 2879 (CH) cm⁻¹; ¹H NMR: $\delta = 8.28$ (s, 1H, CH=N), 7.45–6.85 (m, 3H arom), 4.15 (t, 2H, J = 7.5 Hz, CH_2 -C₂H₅), 1.75 (sext, 2H, J = 7.5 Hz, CH₂-CH₂-CH₃), 0.95 (t, 3H, J = 7.5 Hz, CH₂-CH₃) ppm; C₁₀H₁₁Cl₂NO (232.1); calcd.: C 51.7, H 4.78, N 6.0; found: C 51.8, H 4.76, N 6.4.

N-(n-Butoxy)- D_5 -benzaldimine (22)

Yield: 40%; b.p._{0.02}: 58–59°C; IR: 2960 (CH), 2875 (CH), 2283 (CD) cm⁻¹; ¹H NMR: $\delta = 8.10$ (s, 1H, CH=N), 4.20 (t, 2H, J = 7.5 Hz, CH_2 -C₃H₇(n)), 1.90–1.25 (m, 4H, CH₂-CH₂-CH₂-CH₃), 1.00 (t, 3H, J = 7.5 Hz, CH₂-CH₃).

N-(*n*-Butoxy)- α -D-benzaldimine (23)

Yield: 35%; b.p.: see **22**; IR: 3064 (CH), 3027 (CH), 2960 (CH), 2875 (CH), 2219 (CD) cm⁻¹; ¹H NMR: $\delta = 7.75-7.15$ (m, 5H arom), 4.15 (t, 2H, J = 7.5 Hz, CH_2 - CH_2 - C_2H_5), 1.90–1.20 (m, 4H, CH₂- CH_2 - CH_2 - CH_3), 0.92 (t, 3H, J = 7.5 Hz, CH_2 - CH_3).

N-(D_9 -n-Butoxy)-benzaldimine (24)

0.5 g (0.0026 mol) D₉-*n*-iodobutane; 0.315 g (0.0026 mol) benzaldoxime; yield; 58% b.p.: see **22**; IR: 3083, 3064, 3029, 2988 (CH), 2217, 2108 (CD) cm⁻¹; ¹H NMR: $\delta = 8.10$ (s, 1H, CH=N), 7.75–7.20 (m, 5H arom) ppm; EI-MS (70 eV): m/z (%) = 186 (27; M⁺·), 154 (22: [M-32]⁺·), 153 (100; [M-33]⁺), 105 (59; C₇H₅DN⁺), 77 (41; C₆H₅⁺).

References

- [1] Pongratz H (1992) Thesis (Diplomarbeit). University of Regensburg
- [2] Mutschler E (1996) Arzneimittelwirkungen, 7. Aufl. Wissenschaftl Verlagsgesellschaft, Stuttgart, p 138
- [3] Gräfe U (1992) Antibiotika. Spektrum, Heidelberg New York, p 102, 346
- [4] Fricke U (1992) Dtsch Apoth Ztg 132: 827
- [5] Balsamo A, Lapucci A, Lucacchini A, Macchia M, Martini C, Nardini C, Nencetti S (1994) Eur J Med Chem 29: 967
- [6] Sumitomo Chemical Corp, Japan, JP 83 227327 (1986) Chem Abstr 104: 30447

EI Induced Fragmentation of N-Alkoxy-imines

- [7] a) Goda H, Ihara H, Hirayama C (1994) Tetrahedron Lett 35: 1565; b) Kaiser A, Wiegrebe W (1996) Monatsh Chem 127: 397
- [8] a) Howe J, Williams DH, Bowen RD (1981) Mass Spectrometry, 2nd. edn. McGraw-Hill, New York; b) Chaves Das Neves HJ, Riscardo AMV (1986) J Chromatography 367: 135; c) Leis HJ, Windischhofer W (1996) J Mass Spectrom 31: 486
- [9] a) Middleditch BS, Knights BA (1972) Org Mass Spectrom 6: 179; b) Liedtke RJ, Sheikh YM, Duffield AM, Djerassi C (1972) Org Mass Spectrom 6: 1271; c) Adams GW, Bowie JH, Hayes RN (1989) J Chem Soc Perkin Trans II, 2159
- [10] Cooks RG, Varvoglis AG (1971) Org Mass Spectrom 5: 687
- [11] a) Wentrup C (1984) Reactive Molecules. Wiley, New York, p 28; b) Fossey J, Lefort D, Sorba J (1995) Free Radicals in Organic Chemistry. Masson, Paris, p 297
- [12] Schwarz H (1978) Topics Curr Chem 73: 231
- [13] Grützmacher H-F (1993) Org Mass Spectrom 28: 1375
- [14] a) Schaldach B, Grützmacher H-F (1980) Org Mass Spectrom 15: 175; b) Schaldach B, Grotemeyer B, Grotemeyer J, Grützmacher H-F (1981) Org Mass Spectrom 16: 410
- [15] Tiecco M, Testaferri L (1983) In: Abramovitch RA (ed) Reactive Intermediates. Plenum Press, New York, p 61; cf Ref [11b] p 166
- [16] Ramana DV, Grützmacher H-F (1981) Org Mass Spectrom 16: 227
- [17] Maquestiau A, Van Haverbeke Y, De Meyer C (1974) Bull Soc Chim Belg 83: 147
- [18] McLafferty FW (1983) Tandem Mass Spectrometry. Wiley, New York
- [19] cf Ref [11b] p 143, 167
- [20] Vogel AI (1989) Textbook of Practical Organic Chemistry, 5th edn. Longman Scientific & Technical, Essex, UK, p 566
- [21] Wittig G (1940) Angew Chem 53: 241
- [22] cf Ref [20] p 1170
- [23] Evans EA (1957) Chem Ind (London): 1596
- [24] Tietze LF, Eicher T (1991) Reaktionen und Synthesen im organisch-chemischen Praktikum und Forschungslaboratorium, 2. Aufl. Thieme, Stuttgart, p 102
- [25] Metzger H (1986) In: Müller E (ed) Methoden der organischen Chemie (Houben-Weyl), Vol X/4. Thieme, Stuttgart, p 7
- [26] Buehler E (1967) J Org Chem 32: 261
- [27] Petraczek J (1883) Ber Dtsch Chem Ges 16: 823

Received January 3, 1997. Accepted January 15, 1997